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Abstract

This paper continues and extends existing work concerning two or more manipulators simultaneously

grasping and transferring a common load. We specifically consider the case of one or more arms being

kinematically redundant. Some existing results in the modeling and control of single redundant arms and

multiple manipulators are reviewed. The cooperating situation is modeled in terms of a set of coordinates

representing object motion and internal object squeezing. Nominal trajectories in these coordinates are

produced via actuator load distribution algorithms introduced previously. A controller is developed to

track these desired object trajectories while making use of the kinematic redundancy to additionally aid

the cooperation and coordination of the system. It is shown how the existence of kinematic redundancy

within the system may be used to enhance the degree of cooperation achievable.

1. INTRODUCTION

Recently, there has been increasing interest and research on the subject of multiple manipulators

cooperating on a single task. This seems a natural extension of the notion of single manipulators performing

tasks, and interest stems in no small part from NASA's declared interest in such systems for servicing the

planned space station [12] and other extraterrestrial tasks.

Indeed, it may be in space that practical coordinated multi-arm systems find their first useful deploy-

ment. NASA has already identified a number of areas in which dual or multi-arm systems may be exploited

in the space station, including servicing, assembly and construction, and launch, retrieval and handling of

payloads [27, p.34]. In this paper, we consider the loading and control problems of such systems, to include

both nonredundant and redundant arms.

Although the first space multi-arm systems will probably be nonredundant, it is felt that the current

interest and research in single redundant arms (for some examples, see [4], [15], [23]) should, in a reasonably

short time period, make the natural advantages of redundant arms (increased maneuverability, obstacle

avoidance, subtask performance, etc.) available. It is natural to expect these systems to be exploited in

the types of space-ba_ed applications mentioned above.
Some initial analysis of redundant arms in cooperating systems has already been made [8]-[10], [16],

[21]. Much other work in various aspects of multi-arm systems has appeared recently, in modeling [5], [6],

[15], [19], load distribution [20]-[22], [26], grasping [3], [13], [25], and control [1], [2], [7]-[9], [11], [14], [17],

[18], [24]. In this paper we consider the case of L cooperating arms. In particular, we extend the work

of Uchiyama and Dauchez [18], which considers two nonredundant arms, to L (possibly redundant) arms,
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employing coordinates specifying motion of the commonly held object and internal squeezing forces, which

cause no motion but contribute to internal stresses in the system. The case of redundant arms is included

by extending these coordinates.

A control structure is developed using the method of feedback linearization, to control the system in

terms of the coordinates previously developed. This is similar in spirit to the work of Kreutz and Lokshin

[9], Li, Hsu and Sastry [11], and Wen and Kreutz [24]. However, in contrast to [9] and [24], internal forces

may be controlled and are represented directly at the common object coordinate level, as opposed to [11],
where they are represented at the end effector level.

The paper is organized as follows. Preliminaries and some results on load distribution are presented

in Section 2. Section 3 contains the necessary coordinate transformations and control structure in the

nonredundmat case, and this is extended to include redundant arras in Section 4. Conclusions are presented
in Section 5.

2. LOAD DISTRIBUTION

When two (or more) manipulators form a closed chain (or chains) in cooperatively grasping a common

object, the mobility of the resulting system will usually be lower than the total number of actuators available

in the arms. This overabundance of kinematically dependent inputs arises from the kinematic constraints

necessary to maintain the closed chain(s). If it is desired to utilize R actuators, where R is greater than the

system mobility, then the loading in the system is not uniquely specified by a trajectory of the commonly

grasped object. This means that in controlling such systems, a choice must be made, either implicitly or

explicitly, to select one from a number of possible loading states at each point along the trajectory.

Clearly, since different selections will give rise to different internal loadings and actuator demands,

some loading states will be more desirable than others -- indeed, some may be unacceptable in practice,

requiring unachievable actuator loads or imposing unsustainable internal forces on the manipulators and/or

commonly held object. Investigation of these issues has resulted in a number of suggested solutions of the

load distribution problem ([1], [7]-[9], [13], [14], [16], [18], [20], [21], [24]-[26]). In these, the common em-

phasis is on specifying end-effector forces/moments throughout the trajectory, subject to criteria involving
internal object forces or joint torque requirements.

For this, the motion equations for the commonly held object are developed using the Newton and
Euler equations

L = rn_ (2.1)

_.= + x (2.2)

where m and I are the mass and inertia matrix of the object, and _r and __ are the position of the center of

mass of the object (expressed in a global reference frame) and the angular velocity of the object, respectively.

Assuming the rigid object is rigidly grasped by L robotic arms (or fingers), and that the arms may

impart forces and moments to the object, L and _n are given by

L

L = +m._ (2.3)
i=l

L L

_n= _ _ + Z _ x f_ (2.4)
i=l i=l

where _, _ are the forces and moments applied to the object by the iCh end effector, respectively, __ is

the gravity vector, and s_ is the position of the i_h end effector with respect to the object coordinates

associated with L and _n (see Fig. 1).
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Equations (2.1)-(2.4)may be combined to yield

P= WE
(2.5)

where

is the generahzed load required to move the

e_=R +q_
object, with

T

and the loads being imparted by the L arms are

[¢T nT oT T] T
F "- tL 1 ,--1 ," "" , ___L, n--_LJ

with

W

Si =.

I. o ... I. 0]S1 I_ ... SL I_

[ O -S, a S_2 ]
Si3 0 -Sil

L-s,2 Sil 0

8_.i-----[Sil Si2 8{3 ]T

Iv is the v x v identity matrix (the dimension of v is determined by the particular problem being solved,

e.g. u - v - 3 in the spatial case).
We have multiple solutions in general for the end effector forces F, given the desired object motion

represented by P_.. The general solution to (2.5) is given by

F = W+P + (It - W + W)e (2.6)

where W + • ]KIxk (where k and i are the dimensions of P and F respectively) is a generalized inverse, or

pseudoinverse of W and may be defined in general by W + = AwT(wAwT) -1 for some positive definite

A. In (2.6), e • ]Rz is an arbitrary vector whose choice determines which of the possible solutions of (2.5)

is chosen.

Notice that choosing an e in (2.6) represents one method of load distribution, from the object load P

to end effector loads F, which for nonredundant arms uniquely specifies the joint torques (the redundant

case is discussed in Section 4). Various authors, e.g. [13], [25], have suggested schemes to choose e in (2.6)

subject to object-related criteria, such as 'squeezing' effects on the object. However, care must be taken

in such approaches to allow for the inherent squeezing effects in (2.6) due to the first term W+P. The

contributions to internal forces by this term (which include unavoidable inertial loadings) are investigated

and quantified in [22].
Alternatively, by looking at the effects _ of end effector forces F_ at the object coordinates (where

F= [FT,..., F_F_T]T and F, = [fT,n_iTlT), we have

__P= [[1 ... IL]_--- :--W_-- (2.7)
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which is clearly similar in form to (2.5). At these coordinates, an equation similar to (2.6) may be formed,

and load distribution made at this level. This is the impetus of several approaches ([1], [7], [8], [14], [18],

[26]).
The appropriate transformation in obtaining (2.7) is

7f, = s, = (2.S)

the use of which will be exploited further in Section 3.

A different strategy for load distribution is to consider the manipulator dynamics of the cooperating

system, which may be expressed as (see [5], [6], [21], for full details of the notation used here)

-_s = [M(/_)]._ + _r[Y(/_)]/_ - J_(_)F (2.9)

(where/_ represents the joint variables of the L manipulators, M is the effective inertia matrix, N involves

the centripetal and coriolis effects, J_ is the Jacobian relating end effector variables to joint variables/_

and Y._ is the force/torque control vector corresponding to _).

Consideration of load distribution effects at this (joint) level allows actuator loading effects to be

taken into account, in contrast to the purely object-based criteria mentioned above. Work in this area has

been performed by the authors [20], [21] using (2.6) combined with (2.9) to use joint torque based criteria

to select e_, hence loading throughout the system. Joint space criteria are also used in [8], [14], [26], in

which (2.7) is utilized in placed of (2.6).

However, for such joint-based methods, it is necessary to monitor internal forces built up in the

object as a result of the distribution strategy applied. Motion which alleviates actuator demands will not

be successful if internal forces built up destroy the object transported (of course the opposite logic applies

to object based methods, where end effector forces calculated must be attainable by realistic actuator

torque levels). The work in [8], [26] utilizes joint space criteria subject to

F, = (2.10)

where _'_=1 ai "- 1, and each ai is a non-negative scalar. This approach apportions only motion-causing

components to Z; thus, only the unavoidable inertial forces referred to earlier will build up in the object.

However, this excludes examples such as in the two-arm case, al = -1 and a2 = 2, which will also produce

the desired object motion P. In other words, (2.10) requires all arms to be 'pulling in the same direction.'

This may not always be desirable for the individual arms, and indeed, in some cases it may be desirable to

have forces propagated through the object (for example, to allow one arm to assist in the motion of another

in certain configurations where motion in a given direction is more readily obtained by the actuator load

state of that arm -- notice again that modeling this situation is inherently joint-based).

Noticealsothat,again forthe two-arm case,we have two distinctsituations:(a){0 _<al < landa2 =

I - al}; or (b) {(al < 0,a2 = 1 - al) or (as < 0,al = I - a2)}, which correspond to 'pullingtogether'

or 'squeezing,'as discussedabove. In both casesthe arms 'cooperate'in the sense that the desiredobject

motion isobtained,but only the firstcaserepresentsload sharinginthe sense of(2.10).Such issuesshould

be consideredin those cases,such as [14],when biassqueezing effectsare added to solutionsdeveloped on

the basisof (2.10).

In the case of the methods of [20],[21],object loading again needs to be regulated. This issue

isaddressed in [22],and the case of combined joint/objectspace distributionmethods isthe subject of

currentresearch.In the followingsectionwe considerthe problem of control,and propose a methodology

for controllingobject motion and internalobject squeezing applicableto the types of load distribution

discussedabove. This isextended to the case ofredundant arms in Section4.
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3. OBJECT COORDINATE CONTROL

For the case of multiple manipulators, various control schemes have already been proposed of the

feedback linearization, or 'computed torque,' type. Various philosophies of control synthesis have been

proposed, including the use of LQ theory [17] and various PD or PID strategies. Of the second type,

methods differ mainly in the types of coordinates to be controlled, from joint coordinates [14], [24] to

end effector or operational space coordinates [8], to generalized object coordinates [3], [7], [9], [11]. In

this section, we propose a controller of the computed torque type based on coordinates related directly to

object motion and squeezing.
The goal is to obtain a control structure at the object level in which various strategies may be imple-

mented. The coordinate system established here allows direct access to the force and motion coordinates

involved in internal object squeezing• It is felt that nominal trajectories in these coordinates will, in many

cases, provide the most clear description of the cooperating arm situation. For example, depending on

the held object and task, a particular internal force strategy (perhaps no internal squeezing in given direc-

tions) may be mandatory, and this type of situation is clearly described in terms of the coordinate model

introduced below•
Alternatively, nominal trajectories may be established by various other means. For example, load

distribution algorithms of the type described in the previous section result in desired loadings for v_.,F, or

_, and this is easily converted to desired loadings in our object coordinates (for a discussion of this, and

examples of its importance in load distribution methods, see [22]). The control structure developed in this

section allows the adoption of the above, and other types of methodologies, in a straightforward approach

to object space control.
First, we must establish the relevant coordinate transformations necessary. The coordinates to be

controlled are the object motion coordinates ¢ in (2.5), together with coordinates Az to be defined, where

Az E ]R6(L-t) in general, and represent relative small displacements between end effector motions refer-
m

enced at the generalized object coordinates. For the case of two nonredundant arms, the transformations

have been developed by Uchiyama and Danchez [18] who applied a hybrid position/force scheme to the

result. We extend the result here to cover L arms.

We have seen in (2•8) how end effector forces/moments F__ may be related to their equivalent effects

T__ at the object coordinates. Define by z, the coordinates of the frame obtained by translating the end

effector frame of arm i by _, i.e. the frame associated with _. Then by the duality of force/velocity

relationships we have
= WT_ (3.1)

with _ the end effector coordinates of arm i, and Wi is constant, nonsingular and given by (2.8).

Next we solve (2.7) for _ in terms of P and coordinates Pr, where P__ parameterize the internal

object forces, by

with U • _6LxSL, Pr • I_6(L-1)' W+ • 1_6L×6' V • I_ 6Lxs(L-1), and W + is given by AwT(wA'WT) -1,

y

with A • _SL×sL invertible, and

I 0 0

-I I 0

0 -I I

0 0 ".

0

0

"•. 0

-I I

0 -I

(3.3)
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In (3.3), I represents the 6 x 6 identity matrix. From (3.2) and (3.3), it may be readily seen that V is a

parametrization of the nullspace of W (note WV = 0). P---rrepresents the (L - 1) independent squeezing

forces between (L- 1) distinct end effector pairs due to the construction of V, i.e. components of_ which

do not contribute to motion but squeeze the object. Furthermore, U in (3.2) is nonsingular and constant

if A is constant. It is a simple exercise to check that, for

[:10] 0]A = ".. with Ai = "..

AL ot

(3.4)

' positive and _"_=1 _ = 1, then in (3.2) we obtain, with _ = 0, (T__._)j= a_(P__)j, i.e. we may dowith aj

load sharing in the 'pulling together' sense of (2.10) as before when _ = 0. This extends the work in [18],

where A = I and V was simpler for the two arm case.

.. ZTT,Again using the force/velocity duality and defining z = [Z_lT,. ,*--L] we have from (3.2)

_._ = UT _ (3.5)

where Az_" is the difference in velocities between the frames represented by the ._'s, i.e. the velocities

associated with ff__.

We may apply the 'computed torque' methodology to the system in coordinates --___A_T] T in (3.5).

Specifically, referring to (2.9), (3.1) and (3.5), if the second order kinematics of the arms are given by

= + (3.6)

then the input of

= [MI[JI--'[17v]T[uTI--lW___+ ___T[N]___-- JTE.-[MI[JI-'_T[H]_

sets the dynamics (assuming perfect modeling, _measurements, etc.) to

= (3.8)

[: 0](in (3.7), I_ = ".. , and it is assumed that U is constant, although this is not necessary).

WL

Notice that in (3.7) the dependence of M, J, N and H on __ has been omitted.

Any one of a number of possible strategies may be used to set w (i.e. PD, PID, force feedback).

Issues associated with this type of control are well documented ([24] contains a discussion of such issues

for joint space and end effector PD control of cooperating arms). It is believed by the authors that the

control structure represented by (3.7) is particularly appealing since the coordinates involved go directly

to the 'heart' of the cooperating arm problem, namely those associated with the object, its motion and its

loading which, as we have seen, may be related directly to the overall system loading. The extension at

the object coordinates to include P---rallows this to be introduced. This differs from [9] where a feedforward

approach is used to control internal forces after system linearization. It also represents a generalization of

the framework of [11], in which object motion is controlled together with non-motion causing end effector

force components. In (3.8), the extension of coordinates allows the consideration of a wide class of strategies

at the object level, due to the exposure of the object motion/squeezing structure represented by (3.8) (and
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in fact w may be chosen in (3.8) to implement a strategy similar to that in [11], but with the internal

forces controlled being P---rinstead of end effector force components). Of course, as in all such approaches,

effectiveness will be limited by sensory data and computational power available, and for some cases (e.g.

where some parameters are not well known) other methods, such as adaptive control methods, will prove

useful. However, it is believed irrespectively that further investigation of the control scheme introduced

here ((3.7)) will prove both informative and useful. Results will be presented in a future paper.

4. REDUNDANT ARMS IN COOPERATION

If one or more of the arms in the system is kinematically redundant, we are presented with additional

problems due to the increased complexity -- for the redundant arm(s), we have an overabundance of

kinematically independent inputs relative to the end effector(s) of the arm(s). This means that we have

multiple solutions for the inverse kinematics, the investigation of which is a large research area of its own;

see, for example, [4], [15], [23]. Additionally, the object/end effector spaces do not specify the system

totally. Recall in Section 3 we had 6L convenient variables for the 6L actuators -- 6 coordinates of

object motion, and (6 - 1)L independent velocity differences between end effector related frames. In the

redundant situation, these coordinates remain but now there are 6L + R actuators where R is the total

degree of redundancy in the arms. To control the system we need to specify R more (independent) variables,

representing the choice of arm configurations to be made.

However, the potential benefits of using redundant arms are huge -- the self-motion of the arms may

be used to avoid collisions with obstacles (and each other), and also the system as a whole gains more

mobility, which may be used to reduce actuator demands and aid in cooperative movement. First results in

trajectory planning for multiple cooperating arms are presented in [10] and [16], and a generalized inverse

of the Jacobian is used in [8] to reduce torque demands while controlling object motion forces.

Here we develop a controller by extending the coordinate space to specify R extra variables to be

controlled independently using the redundant actuator(s). The idea is to make these introduced variables

significant to the multiple manipulator problem. Notice that one advantage is that all results related to

end effector, or object spaces, still remain pertinent -- the kinematic redundancy is 'decoupled' from the

object. Therefore the R extra coordinates should be directly associated with the redundant arm(s) (this

is clear when it is remembered that their purpose is to specify the configuration(s) of the arm(s)).

This means that we must specify R coordinates r such that r_.is independent of _ and Az (equivalently

independent of the end effector coordinates) and that _r and _ (equivalently _r and z) uniquely define the

configurations of all arms. Mathematically, we must have R constraints such that

__= C/_ (4.1)
B

where C E IRR×(6L+R), and C is such that B E _(eL+R)x(eL+R), defined by

is invertible. This will be true provided £ is chosen correctly and J is of full rank (i.e. no arm is in a

singular configuration).
Given a choice of _%and noting (4.2), an extension of the control in Section 3 leads to

.-- [-_T, -lip -T[M]B-1W*[U ] --'}- _ [N]_" - jT____._ [M]B-I_ T ['ff]_ (4.3)

where W* = [_ I°], uT = [u r /no], _T ['H-] _ = [_] fl_',and IR is the R x R identity matrix) which sets

the dynamics to
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Thecommentsmade in Section 3 apply again to this situation, and if the kinematics have been

planned, giving the _r trajectories, various strategies may be used to select to to track the trajectory as

before. This strategy of extending the workspace coordinates to control redundant manipulators was used

by Egeland [4] for single redundant manipulators, and (4.3)-(4.4) represents the extension of this to the

multiple manipulator situation.

One further intriguing possibility is that of selecting _r trajectories 'on-line' to allow the redundant

arms to configure themselves along the trajectory to react to problems unforeseen in the planning, while

continuing to track the planned desired object motion and squeezing trajectories. Research in this direction

is underway currently.

5. CONCLUSIONS

We have presented a framework for the control of multi-arm robot systems. Cooperation is modeled

in terms of coordinates representing object motion and internal object squeezing. A control structure has

been developed to track trajectories in these coordinates. This was extended to allow the use of redundant

arms by making an appropriate extension of coordinates.
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Figure 1. Multiple arm cooperating system.
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